## 01 Controllers
> `官网`:<https://kubernetes.io/docs/concepts/workloads/controllers/>
### ReplicationController(RC)
> `官网`:https://kubernetes.io/docs/concepts/workloads/controllers/replicationcontroller/
>
> ```
> A ReplicationController ensures that a specified number of pod replicas are running at any one time. In other words, a ReplicationController makes sure that a pod or a homogeneous set of pods is always up and available.
> ```
ReplicationController定义了一个期望的场景,即声明某种Pod的副本数量在任意时刻都符合某个预期值,所以RC的定义包含以下几个部分:
- Pod期待的副本数(replicas)
- 用于筛选目标Pod的Label Selector
- 当Pod的副本数量小于预期数量时,用于创建新Pod的Pod模板(template)
也就是说通过RC实现了集群中Pod的高可用,减少了传统IT环境中手工运维的工作。
**Have a try**
> kind:表示要新建对象的类型
>
> spec.selector:表示需要管理的Pod的label,这里表示包含app: nginx的label的Pod都会被该RC管理
>
> spec.replicas:表示受此RC管理的Pod需要运行的副本数
>
> spec.template:表示用于定义Pod的模板,比如Pod名称、拥有的label以及Pod中运行的应用等
>
> 通过改变RC里Pod模板中的镜像版本,可以实现Pod的升级功能
>
> kubectl apply -f nginx-pod.yaml,此时k8s会在所有可用的Node上,创建3个Pod,并且每个Pod都有一个app: nginx的label,同时每个Pod中都运行了一个nginx容器。
>
> 如果某个Pod发生问题,Controller Manager能够及时发现,然后根据RC的定义,创建一个新的Pod
>
> 扩缩容:kubectl scale rc nginx --replicas=5
> (1)创建名为nginx_replication.yaml
```yaml
apiVersion: v1
kind: ReplicationController
metadata:
name: nginx
spec:
replicas: 3
selector:
app: nginx
template:
metadata:
name: nginx
labels:
app: nginx
spec:
containers:
- name: nginx
image: nginx
ports:
- containerPort: 80
```
> (2)根据nginx_replication.yaml创建pod
```
kubectl apply -f nginx_replication.yaml
```
> (3)查看pod
```
kubectl get pods -o wide
NAME READY STATUS
nginx-hksg8 1/1 Running 0 44s 192.168.80.195 w2
nginx-q7bw5 1/1 Running 0 44s 192.168.190.67 w1
nginx-zzwzl 1/1 Running 0 44s 192.168.190.68 w1
kubectl get rc
NAME DESIRED CURRENT READY AGE
nginx 3 3 3 2m54s
```
> (4)尝试删除一个pod
```shell
kubectl delete pods nginx-zzwzl
kubectl get pods
```
> (5)对pod进行扩缩容
```
kubectl scale rc nginx --replicas=5
kubectl get pods
nginx-8fctt 0/1 ContainerCreating 0 2s
nginx-9pgwk 0/1 ContainerCreating 0 2s
nginx-hksg8 1/1 Running 0 6m50s
nginx-q7bw5 1/1 Running 0 6m50s
nginx-wzqkf 1/1 Running 0 99s
```
> (6)删除pod
```shell
kubectl delete -f nginx_replication.yaml
```
### ReplicaSet(RS)
> `官网`:https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
>
> ```
> A ReplicaSet’s purpose is to maintain a stable set of replica Pods running at any given time. As such, it is often used to guarantee the availability of a specified number of identical Pods.
> ```
>
> 在Kubernetes v1.2时,RC就升级成了另外一个概念:Replica Set,官方解释为“下一代RC”
>
> ReplicaSet和RC没有本质的区别,kubectl中绝大部分作用于RC的命令同样适用于RS
>
> RS与RC唯一的区别是:RS支持基于集合的Label Selector(Set-based selector),而RC只支持基于等式的Label Selector(equality-based selector),这使得Replica Set的功能更强
**Have a try**
```yaml
apiVersion: extensions/v1beta1
kind: ReplicaSet
metadata:
name: frontend
spec:
matchLabels:
tier: frontend
matchExpressions:
- {key:tier,operator: In,values: [frontend]}
template:
...
```
`注意`:一般情况下,我们很少单独使用Replica Set,它主要是被Deployment这个更高的资源对象所使用,从而形成一整套Pod创建、删除、更新的编排机制。当我们使用Deployment时,无须关心它是如何创建和维护Replica Set的,这一切都是自动发生的。同时,无需担心跟其他机制的不兼容问题(比如ReplicaSet不支持rolling-update但Deployment支持)。
### Deployment
> `官网`:https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
>
> ```
> A Deployment provides declarative updates for Pods and ReplicaSets.
>
> You describe a desired state in a Deployment, and the Deployment Controller changes the actual state to the desired state at a controlled rate. You can define Deployments to create new ReplicaSets, or to remove existing Deployments and adopt all their resources with new Deployments.
> ```
>
> Deployment相对RC最大的一个升级就是我们可以随时知道当前Pod“部署”的进度。
>
> 创建一个Deployment对象来生成对应的Replica Set并完成Pod副本的创建过程
>
> 检查Deploymnet的状态来看部署动作是否完成(Pod副本的数量是否达到预期的值)
> (1)创建nginx_deployment.yaml文件
```yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: nginx-deployment
labels:
app: nginx
spec:
replicas: 3
selector:
matchLabels:
app: nginx
template:
metadata:
labels:
app: nginx
spec:
containers:
- name: nginx
image: nginx:1.7.9
ports:
- containerPort: 80
```
> (2)根据nginx_deployment.yaml文件创建pod
```shell
kubectl apply -f nginx_deployment.yaml
```
> (3)查看pod
>
> kubectl get pods -o wide
>
> kubectl get deployment
>
> kubectl get rs
>
> kubectl get deployment -o wide
```
nginx-deployment-6dd86d77d-f7dxb 1/1 Running 0 22s 192.168.80.198 w2
nginx-deployment-6dd86d77d-npqxj 1/1 Running 0 22s 192.168.190.71 w1
nginx-deployment-6dd86d77d-swt25 1/1 Running 0 22s 192.168.190.70 w1
```
nginx-deployment[deployment]-6dd86d77d[replicaset]-f7dxb[pod]
> (4)当前nginx的版本
```
kubectl get deployment -o wide
NAME READY UP-TO-DATE AVAILABLE AGE CONTAINERS IMAGES SELECTOR
nginx-deployment 3/3 3 3 3m27s nginx nginx:1.7.9 app=nginx
```
> (5)更新nginx的image版本
```
kubectl set image deployment nginx-deployment nginx=nginx:1.9.1
```
## 02 Labels and Selectors
> 在前面的yaml文件中,看到很多label,顾名思义,就是给一些资源打上标签的
>
> `官网`:https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
>
> ```
> Labels are key/value pairs that are attached to objects, such as pods.
> ```
```yaml
apiVersion: v1
kind: Pod
metadata:
name: nginx-pod
labels:
app: nginx
```
表示名称为nginx-pod的pod,有一个label,key为app,value为nginx。
我们可以将具有同一个label的pod,交给selector管理
```yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: nginx-deployment
labels:
app: nginx
spec:
replicas: 3
selector: # 匹配具有同一个label属性的pod标签
matchLabels:
app: nginx
template: # 定义pod的模板
metadata:
labels:
app: nginx # 定义当前pod的label属性,app为key,value为nginx
spec:
containers:
- name: nginx
image: nginx:1.7.9
ports:
- containerPort: 80
```
> 查看pod的label标签:kubectl get pods --show-labels
>
> **这里可以尝试一下selector匹配不上的结果**
## 03 Namespace
> kubectl get pods
>
> kubectl get pods -n kube-system
比较一下,上述两行命令的输入是否一样,发现不一样,是因为Pod属于不同的Namespace。
> 查看一下当前的命名空间:kubectl get namespaces/ns
>
> ```
> NAME STATUS AGE
> default Active 27m
> kube-node-lease Active 27m
> kube-public Active 27m
> kube-system Active 27m
> ```
其实说白了,命名空间就是为了隔离不同的资源,比如:Pod、Service、Deployment等。可以在输入命令的时候指定命名空间`-n`,如果不指定,则使用默认的命名空间:default。
### 创建命名空间
> myns-namespace.yaml
>
> ```yaml
> apiVersion: v1
> kind: Namespace
> metadata:
> name: myns
> ```
kubectl apply -f myns-namespace.yaml
kubectl get namespaces/ns
```
NAME STATUS AGE
default Active 38m
kube-node-lease Active 38m
kube-public Active 38m
kube-system Active 38m
myns Active 6s
```
### 指定命名空间下的资源
> 比如创建一个pod,属于myns命名空间下
>
> vi nginx-pod.yaml
>
> kubectl apply -f nginx-pod.yaml
```yaml
apiVersion: v1
kind: Pod
metadata:
name: nginx-pod
namespace: myns
spec:
containers:
- name: nginx-container
image: nginx
ports:
- containerPort: 80
```
> 查看myns命名空间下的Pod和资源
>
> kubectl get pods
>
> kubectl get pods -n myns
>
> kubectl get all -n myns
>
> kubectl get pods --all-namespaces #查找所有命名空间下的pod
## 04 Network
### 4.1 同一个Pod中的容器通信
> 接下来就要说到跟Kubernetes网络通信相关的内容咯
>
> 我们都知道K8S最小的操作单位是Pod,先思考一下同一个Pod中多个容器要进行通信
>
> 由官网的这段话可以看出,同一个pod中的容器是共享网络ip地址和端口号的,通信显然没问题
>
> ```
> Each Pod is assigned a unique IP address. Every container in a Pod shares the network namespace, including the IP address and network ports.
> ```
那如果是通过容器的名称进行通信呢?就需要将所有pod中的容器加入到同一个容器的网络中,我们把该容器称作为pod中的pause container。
### 4.2 集群内Pod之间的通信
> 接下来就聊聊K8S最小的操作单元,Pod之间的通信
>
> 我们都之间Pod会有独立的IP地址,这个IP地址是被Pod中所有的Container共享的
>
> 那多个Pod之间的通信能通过这个IP地址吗?
>
> 我认为需要分两个维度:一是集群中同一台机器中的Pod,二是集群中不同机器中的Pod
**准备两个pod,一个nginx,一个busybox**
> nginx_pod.yaml
>
> ```yaml
> apiVersion: v1
> kind: Pod
> metadata:
> name: nginx-pod
> labels:
> app: nginx
> spec:
> containers:
> - name: nginx-container
> image: nginx
> ports:
> - containerPort: 80
> ```
> busybox_pod.yaml
>
> ```yaml
> apiVersion: v1
> kind: Pod
> metadata:
> name: busybox
> labels:
> app: busybox
> spec:
> containers:
> - name: busybox
> image: busybox
> command: ['sh', '-c', 'echo The app is running! && sleep 3600']
> ```
> 将两个pod运行起来,并且查看运行情况
>
> kubectl apply -f nginx_pod.yaml
>
> kubectl apply -f busy_pod.yaml
>
> kubectl get pods -o wide
>
> ```
> NAME READY STATUS RESTARTS AGE IP NODE
> busybox 1/1 Running 0 49s 192.168.221.70 worker02-kubeadm-k8s
> nginx-pod 1/1 Running 0 7m46s 192.168.14.1 worker01-kubeadm-k8s
> ```
>
> `发现`:nginx-pod的ip为192.168.14.1 busybox-pod的ip为192.168.221.70
#### 同一个集群中同一台机器
> (1)来到worker01:ping 192.168.14.1
```shell
PING 192.168.14.1 (192.168.14.1) 56(84) bytes of data.
64 bytes from 192.168.14.1: icmp_seq=1 ttl=64 time=0.063 ms
64 bytes from 192.168.14.1: icmp_seq=2 ttl=64 time=0.048 ms
```
> (2)来到worker01:curl 192.168.14.1
```html
<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
body {
width: 35em;
margin: 0 auto;
font-family: Tahoma, Verdana, Arial, sans-serif;
}
</style>
```
#### 同一个集群中不同机器
> (1)来到worker02:ping 192.168.14.1
```shell
[root@worker02-kubeadm-k8s ~]# ping 192.168.14.1
PING 192.168.14.1 (192.168.14.1) 56(84) bytes of data.
64 bytes from 192.168.14.1: icmp_seq=1 ttl=63 time=0.680 ms
64 bytes from 192.168.14.1: icmp_seq=2 ttl=63 time=0.306 ms
64 bytes from 192.168.14.1: icmp_seq=3 ttl=63 time=0.688 ms
```
> (2)来到worker02:curl 192.168.14.1,同样可以访问nginx
> (3)来到master:
>
> ping/curl 192.168.14.1 访问的是worker01上的nginx-pod
>
> ping 192.168.221.70 访问的是worker02上的busybox-pod
> (4)来到worker01:ping 192.168.221.70 访问的是worker02上的busybox-pod
#### How to implement the Kubernetes Cluster networking model--Calico
> `官网`:<https://kubernetes.io/docs/concepts/cluster-administration/networking/#the-kubernetes-network-model>
- pods on a node can communicate with all pods on all nodes without NAT
- agents on a node (e.g. system daemons, kubelet) can communicate with all pods on that node
- pods in the host network of a node can communicate with all pods on all nodes without NAT
### 4.3 集群内Service-Cluster IP
> 对于上述的Pod虽然实现了集群内部互相通信,但是Pod是不稳定的,比如通过Deployment管理Pod,随时可能对Pod进行扩缩容,这时候Pod的IP地址是变化的。能够有一个固定的IP,使得集群内能够访问。也就是之前在架构描述的时候所提到的,能够把相同或者具有关联的Pod,打上Label,组成Service。而Service有固定的IP,不管Pod怎么创建和销毁,都可以通过Service的IP进行访问
>
> `Service官网`:<https://kubernetes.io/docs/concepts/services-networking/service/>
>
> ```
> An abstract way to expose an application running on a set of Pods as a network service.
> With Kubernetes you don’t need to modify your application to use an unfamiliar service discovery mechanism. Kubernetes gives Pods their own IP addresses and a single DNS name for a set of Pods, and can load-balance across them.
> ```
> (1)创建whoami-deployment.yaml文件,并且apply
```yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: whoami-deployment
labels:
app: whoami
spec:
replicas: 3
selector:
matchLabels:
app: whoami
template:
metadata:
labels:
app: whoami
spec:
containers:
- name: whoami
image: jwilder/whoami
ports:
- containerPort: 8000
```
> (2)查看pod以及service
```
whoami-deployment-5dd9ff5fd8-22k9n 192.168.221.80 worker02-kubeadm-k8s
whoami-deployment-5dd9ff5fd8-vbwzp 192.168.14.6 worker01-kubeadm-k8s
whoami-deployment-5dd9ff5fd8-zzf4d 192.168.14.7 worker01-kubeadm-k8s
```
kubect get svc:可以发现目前并没有关于whoami的service
```
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 19h
```
> (3)在集群内正常访问
```
curl 192.168.221.80:8000/192.168.14.6:8000/192.168.14.7:8000
```
> (4)创建whoami的service
>
> `注意`:该地址只能在集群内部访问
```
kubectl expose deployment whoami-deployment
kubectl get svc
删除svc kubectl delete service whoami-deployment
[root@master-kubeadm-k8s ~]# kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 19h
whoami-deployment ClusterIP 10.105.147.59 <none> 8000/TCP 23s
```
**可以发现有一个Cluster IP类型的service,名称为whoami-deployment,IP地址为10.101.201.192**
> (5)通过Service的Cluster IP访问
```
[root@master-kubeadm-k8s ~]# curl 10.105.147.59:8000
I'm whoami-deployment-678b64444d-b2695
[root@master-kubeadm-k8s ~]# curl 10.105.147.59:8000
I'm whoami-deployment-678b64444d-hgdrk
[root@master-kubeadm-k8s ~]# curl 10.105.147.59:8000
I'm whoami-deployment-678b64444d-65t88
```
> (6)具体查看一下whoami-deployment的详情信息,发现有一个Endpoints连接了具体3个Pod
```
[root@master-kubeadm-k8s ~]# kubectl describe svc whoami-deployment
Name: whoami-deployment
Namespace: default
Labels: app=whoami
Annotations: <none>
Selector: app=whoami
Type: ClusterIP
IP: 10.105.147.59
Port: <unset> 8000/TCP
TargetPort: 8000/TCP
Endpoints: 192.168.14.8:8000,192.168.221.81:8000,192.168.221.82:8000
Session Affinity: None
Events: <none>
```
> (7)不妨对whoami扩容成5个
```
kubectl scale deployment whoami-deployment --replicas=5
```
> (8)再次访问:curl 10.105.147.59:8000
> (9)再次查看service具体信息:kubectl describe svc whoami-deployment
> (10)其实对于Service的创建,不仅仅可以使用kubectl expose,也可以定义一个yaml文件
```yaml
apiVersion: v1
kind: Service
metadata:
name: my-service
spec:
selector:
app: MyApp
ports:
- protocol: TCP
port: 80
targetPort: 9376
type: Cluster
```
`conclusion`:其实Service存在的意义就是为了Pod的不稳定性,而上述探讨的就是关于Service的一种类型Cluster IP,只能供集群内访问
> 以Pod为中心,已经讨论了关于集群内的通信方式,接下来就是探讨集群中的Pod访问外部服务,以及外部服务访问集群中的Pod
### 4.4 Pod访问外部服务
比较简单,没太多好说的内容,直接访问即可
### 4.5 外部服务访问集群中的Pod
#### Service-NodePort
> 也是Service的一种类型,可以通过NodePort的方式
>
> 说白了,因为外部能够访问到集群的物理机器IP,所以就是在集群中每台物理机器上暴露一个相同的IP,比如32008
> (1)根据whoami-deployment.yaml创建pod
```yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: whoami-deployment
labels:
app: whoami
spec:
replicas: 3
selector:
matchLabels:
app: whoami
template:
metadata:
labels:
app: whoami
spec:
containers:
- name: whoami
image: jwilder/whoami
ports:
- containerPort: 8000
```
> (2)创建NodePort类型的service,名称为whoami-deployment
```
kubectl delete svc whoami-deployment
kubectl expose deployment whoami-deployment --type=NodePort
[root@master-kubeadm-k8s ~]# kubectl get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 21h
whoami-deployment NodePort 10.99.108.82 <none> 8000:32041/TCP 7s
```
> (3)注意上述的端口32041,实际上就是暴露在集群中物理机器上的端口
```
lsof -i tcp:32041
netstat -ntlp|grep 32041
```
> (4)浏览器通过物理机器的IP访问
```
http://192.168.0.51:32041
curl 192.168.0.61:32041
```
`conclusion`:NodePort虽然能够实现外部访问Pod的需求,但是真的好吗?其实不好,占用了各个物理主机上的端口
#### Service-LoadBalance
通常需要第三方云提供商支持,有约束性
#### Ingress
> `官网`:<https://kubernetes.io/docs/concepts/services-networking/ingress/>
>
> ```
> An API object that manages external access to the services in a cluster, typically HTTP.
>
> Ingress can provide load balancing, SSL termination and name-based virtual hosting.
> ```
![](F:/work/kubernetes1117/images/29.png)
> 可以发现,Ingress就是帮助我们访问集群内的服务的。不过在看Ingress之前,我们还是先以一个案例出发。
>
> 很简单,在K8S集群中部署tomcat
浏览器想要访问这个tomcat,也就是外部要访问该tomcat,用之前的Service-NodePort的方式是可以的,比如暴露一个32008端口,只需要访问192.168.0.61:32008即可。
vi my-tomcat.yaml
kubectl apply -f my-tomcat.yaml
kubectl get pods
kubectl get deployment
kubectl get svc
`tomcat-service NodePort 10.105.51.97 <none> 80:31032/TCP 37s`
```yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: tomcat-deployment
labels:
app: tomcat
spec:
replicas: 1
selector:
matchLabels:
app: tomcat
template:
metadata:
labels:
app: tomcat
spec:
containers:
- name: tomcat
image: tomcat
ports:
- containerPort: 8080
---
apiVersion: v1
kind: Service
metadata:
name: tomcat-service
spec:
ports:
- port: 80
protocol: TCP
targetPort: 8080
selector:
app: tomcat
type: NodePort
```
> 显然,Service-NodePort的方式生产环境不推荐使用,那接下来就基于上述需求,使用Ingress实现访问tomcat的需求。
>
> `官网Ingress`:<https://kubernetes.io/docs/concepts/services-networking/ingress/>
>
> `GitHub Ingress Nginx`:<https://github.com/kubernetes/ingress-nginx>
>
> `Nginx Ingress Controller`:<https://kubernetes.github.io/ingress-nginx/
> (1)以Deployment方式创建Pod,该Pod为Ingress Nginx Controller,要想让外界访问,可以通过Service的NodePort或者HostPort方式,这里选择HostPort,比如指定worker01运行
```shell
# 确保nginx-controller运行到w1节点上
kubectl label node w1 name=ingress
# 使用HostPort方式运行,需要增加配置
hostNetwork: true
# 搜索nodeSelector,并且要确保w1节点上的80和443端口没有被占用,镜像拉取需要较长的时间,这块注意一下哦
# mandatory.yaml在网盘中的“课堂源码”目录
kubectl apply -f mandatory.yaml
kubectl get all -n ingress-nginx
```
> (2)查看**w1**的80和443端口
```
lsof -i tcp:80
lsof -i tcp:443
```
> (3)创建tomcat的pod和service
>
> > 记得将之前的tomcat删除:kubectl delete -f my-tomcat.yaml
>
> vi tomcat.yaml
>
> kubectl apply -f tomcat.yaml
>
> kubectl get svc
>
> kubectl get pods
```yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: tomcat-deployment
labels:
app: tomcat
spec:
replicas: 1
selector:
matchLabels:
app: tomcat
template:
metadata:
labels:
app: tomcat
spec:
containers:
- name: tomcat
image: tomcat
ports:
- containerPort: 8080
---
apiVersion: v1
kind: Service
metadata:
name: tomcat-service
spec:
ports:
- port: 80
protocol: TCP
targetPort: 8080
selector:
app: tomcat
```
> (4)创建Ingress以及定义转发规则
>
> kubectl apply -f nginx-ingress.yaml
>
> kubectl get ingress
>
> kubectl describe ingress nginx-ingress
```yaml
#ingress
apiVersion: extensions/v1beta1
kind: Ingress
metadata:
name: nginx-ingress
spec:
rules:
- host: tomcat.jack.com
http:
paths:
- path: /
backend:
serviceName: tomcat-service
servicePort: 80
```
> (5)修改win的hosts文件,添加dns解析
```
192.168.8.61 tomcat.jack.com
```
> (6)打开浏览器,访问tomcat.jack.com
`总结`:如果以后想要使用Ingress网络,其实只要定义ingress,service和pod即可,前提是要保证nginx ingress controller已经配置好了。
版权归属:
Administrator
许可协议:
本文使用《署名-非商业性使用-相同方式共享 4.0 国际 (CC BY-NC-SA 4.0)》协议授权
评论区